Advancing Odor Mixture Discriminability with Pretrained Embeddings and Boosting

Yikun Han Zehua Wang Stephen Yang Ambuj Tewari

Department of Statistics, University of Michigan

October 1, 2024

Table of Contents

Background

- Dataset
- Task

2 Methodology

- Embeddings for Single Molecules
- Graph Neural Network
- Embeddings of Molecules to Embedding of Mixtures
- Embedding to Distance
- CatBoost

3 Conclusion

- Results
- Key Insights from Small Data
- Looking to the Future

Dataset

Dataset

Summary of the Challenge Data

- . In both tasks, the outcome measure varies from 0 to 1
- · We consider Similarity score to be equivalent to the Discrimination score
- In the triangle discrimination task, a score of score of 0.7 means 70% of panelists could identify the odor that was different
- In the explicit similarity task, a score of score of 0.7 is the panel average rating of dissimilarity

Dataset	Measurement Explicit similarity Triangle discrimination		
Snitz et al., 2013			
Bushdid et al., 2014			
Ravia et al., 2020	Explicit similarity		

[1] DREAM Olfactory Mixtures Prediction Challenge (n.d.). Synapse (syn53470621)

CASI lab (UMich)

э

イロト イポト イヨト イヨト

Task

DREAM mixture olfaction prediction

703 unique mixtures and 500 pairs measured

CASI lab (UMich)

RSGDREAM 2024

October 1, 2024

3

[2] B. K. Lee et al. (2023). "A principal odor map unifies diverse tasks in olfactory perception". In: *Science*[3] openpom [GitHub repository]

(n.d.). BioMachineLearning

CASI lab (UMich)

RSGDREAM 2024

October 1, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

GoodScents-Leffingwell Dataset

- 4983 samples
- 138 labels
- Multi-label classification

イロン 不聞 とくほとう ほとう

э

[4] A. Keller et al. (2017). "Predicting human olfactory perception from chemical features of odor molecules". In: *Science*

CASI lab (UMich)

RSGDREAM 2024

October 1, 2024

イロト イヨト イヨト

8/20

3

Keller-Vosshall Dataset

- 338 samples
- 19 odor descriptors, pleasantness, intensity
- Multi-label classification, regression

イロト イポト イヨト イヨト

9/20

э

Model 1: Weighted the molecules in the intersection of pre-trained data and competition data more heavily.

Model 2: Merged the leaderboard and test set.

CASI lab (UMich)

RSGDREAM 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 1, 2024

10 / 20

3

Graph Neural Network

[5] B. Sanchez-Lengeling et al. (2019). "Machine learning for scent: Learning generalizable perceptual representations of small molecules". In: arXiv. arXiv: 1910.10685

э

11/20

< □ > < 同 > < 回 > < 回 > < 回 >

Embeddings of Molecules to Embedding of Mixtures

We apply a **softmax transformation** to normalize the intensities:

$$w_i = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

where w_i are the normalized weights. The final **mixture embedding** is the weighted sum of perceptual embeddings:

$$\mathbf{E}_{\mathsf{mixture}} = \sum_{i} w_i \mathbf{E}_i$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Embeddings of Molecules to Embedding of Mixtures

We introduce a **temperature param**eter τ to control the smoothness of the softmax:

$$w_i = \frac{e^{x_i/\tau}}{\sum_j e^{x_j/\tau}}$$

A lower τ makes the weights sharper, focusing on larger values, while a higher τ distributes the weights more evenly. This helps adjust the influence of each molecule in the mixture.

イロト 不得下 イヨト イヨト

Embedding to Distance

Embedding to Distance

CatBoost

Symmetric Trees

• Trees where the same splitting criterion is applied across all nodes at

the same depth

- Efficient computation
- Fast predictions
- Regularization effect

→ ∃ →

Image: Image:

Results

Results

	LightGBM	XGBoost	RF	CatBoost
Valid Pearson	0.601	0.697	0.636	0.633
Valid RMSE	0.128	0.117	0.124	0.122
Leaderboard Pearson	0.549	0.502	0.596	0.625
Leaderboard RMSE	0.131	0.137	0.123	0.123
Test Pearson	-	-	-	0.501
Test RMSE	-	-	-	0.089

Key Insights from Small Data

• Pretrained Models:

We relied heavily on pretrained models.

• Data Augmentation:

Tried substituting a single molecule in a mixture with its nearest neighbor based on GNN embeddings, but this approach did not yield improvements.

• Simple Models:

Small data led us to keep models and featurization straightforward.

Regularization:

CatBoost integrates strong **regularization** techniques, which help prevent overfitting more effectively than other boosting and bagging methods.

(日)

Looking to the Future

• More Pretrained Models:

As larger datasets become available, we will explore more pretrained models, particularly focusing on olfactory receptor (OR) modeling.

• Deep Learning and Attention:

Deep learning, especially attention mechanisms, will be leveraged to better capture the relationships between sets and create more sophisticated embeddings.

• Advanced Data Augmentation:

With more data, advanced data augmentation techniques will be explored to further enhance model performance and generalizability.

イロト イヨト イヨト ・

Thanks for listening!

Olfactory Mixtures Prediction Challenge DREAM Challenge

IBM Research

Sage Bionetworks

RSGDREAM 2024

October 1, 2024

э

20 / 20

イロト イポト イヨト イヨト