Advancing Odor Mixture Discriminability with Pretrained Embeddings and Boosting

Yikun Han Zehua Wang Stephen Yang Ambuj Tewari

Department of Statistics, University of Michigan

October 1, 2024

Table of Contents

[Background](#page-2-0)

- **•** [Dataset](#page-2-0)
- [Task](#page-3-0)

2 [Methodology](#page-4-0)

- **[Embeddings for Single Molecules](#page-4-0)**
- [Graph Neural Network](#page-10-0)
- [Embeddings of Molecules to Embedding of Mixtures](#page-11-0)
- **[Embedding to Distance](#page-13-0)**
- [CatBoost](#page-15-0)

[Conclusion](#page-16-0)

- **•** [Results](#page-16-0)
- [Key Insights from Small Data](#page-17-0)
- **•** [Looking to the Future](#page-18-0)

◂**◻▸ ◂◚▸**

 200

Dataset

Summary of the Challenge Data

- . In both tasks, the outcome measure varies from 0 to 1
- . We consider Similarity score to be equivalent to the Discrimination score
- . In the triangle discrimination task, a score of score of 0.7 means 70% of panelists could identify the odor that was different
- In the explicit similarity task, a score of score of 0.7 is the panel average rating of dissimilarity

[1] DREAM Olfactory Mixtures Prediction Challenge (n.d.). Synapse (syn53470621)

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 3 / 20

 $A \Box B$ A

 QQ

э

Task

703 unique mixtures and 500 pairs measured

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 4/20

イロト イ部 トイヨ トイヨト

D.

[2] B. K. Lee et al. (2023). "A principal odor map unifies diverse tasks in olfactory perception". In: Science [3] openpom [GitHub repository]

(n.d.). BioMachineLearning

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 6/20

イロト イ押 トイヨ トイヨト

э

GoodScents-Leffingwell Dataset

- 4983 samples
- 138 labels
- Multi-label classification

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

目

[4] A. Keller et al. (2017). "Predicting human olfactory perception from chemical features of odor molecules". In: Science

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 8/20

 298

э

Keller-Vosshall Dataset

- 338 samples
- 19 odor descriptors, pleasantness, intensity
- **•** Multi-label classification, regression

イロト イ押ト イヨト イヨト

э

 QQ

Model 1: Weighted the molecules in the intersection of pre-trained data and competition data more heavily.

Model 2: Merged the leaderboard and test set.

 QQ

÷.

イロト イ押ト イヨト イヨト CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 10 / 20

Graph Neural Network

[5] B. Sanchez-Lengeling et al. (2019). "Machine learning for scent: Learning generalizable perceptual representations of small molecules". In: arXiv. arXiv: [1910.10685](https://arxiv.org/abs/1910.10685)

 Ω

イロト イ押ト イヨト イヨト

Embeddings of Molecules to Embedding of Mixtures

We apply a softmax transformation to normalize the intensities:

$$
w_i = \frac{e^{x_i}}{\sum_j e^{x_j}}
$$

where w_i are the normalized weights. The final mixture embedding is the weighted sum of perceptual embeddings:

$$
\mathbf{E}_{\text{mixture}} = \sum_{i} w_i \mathbf{E}_i
$$

イロト イ押ト イヨト イヨト

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 12 / 20

 QQ

Embeddings of Molecules to Embedding of Mixtures

We introduce a temperature parameter τ to control the smoothness of the softmax:

$$
w_i = \frac{e^{x_i/\tau}}{\sum_j e^{x_j/\tau}}
$$

A lower τ makes the weights sharper, focusing on larger values, while a higher τ distributes the weights more evenly. This helps adjust the influence of each molecule in the mixture.

イロト イ押ト イヨト イヨト

Embedding to Distance

Embedding to Distance

CatBoost

Symmetric Trees

- Trees where the same splitting criterion is applied across all nodes at the same depth
- **•** Efficient computation
- **•** Fast predictions
- Regularization effect

э

 Ω

 \rightarrow \equiv \rightarrow

◂**◻▸ ◂◚▸**

Results

Key Insights from Small Data

• Pretrained Models:

We relied heavily on pretrained models.

Data Augmentation:

Tried substituting a single molecule in a mixture with its nearest neighbor based on GNN embeddings, but this approach did not yield improvements.

Simple Models:

Small data led us to keep models and featurization straightforward.

• Regularization:

CatBoost integrates strong regularization techniques, which help prevent overfitting more effectively than other boosting and bagging methods.

イロト イ押 トイヨ トイヨ トー

Looking to the Future

More Pretrained Models:

As larger datasets become available, we will explore more pretrained models, particularly focusing on olfactory receptor (OR) modeling.

Deep Learning and Attention:

Deep learning, especially attention mechanisms, will be leveraged to better capture the relationships between sets and create more sophisticated embeddings.

Advanced Data Augmentation:

With more data, advanced data augmentation techniques will be explored to further enhance model performance and generalizability.

 QQ

イロト イ押 トイヨ トイヨ トー

Thanks for listening!

Olfactory Mixtures Prediction Challenge DREAM Challenge

IBM Research

Sage Bionetworks

CASI lab (UMich) [RSGDREAM 2024](#page-0-0) October 1, 2024 20 / 20

э

 QQ

イロト イ押ト イヨト イヨト