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Abstract

An interesting behavior in large language models (LLMs) is
prompt sensitivity. When provided with different but seman-
tically equivalent versions of the same prompt, models may
produce very different distributions of answers. This suggests
that the uncertainty reflected in a model’s output distribu-
tion for one prompt may not reflect the model’s uncertainty
about the meaning of the prompt. We model prompt sensi-
tivity as a type of generalization error, and show that sam-
pling across the semantic “concept space” with paraphrasing
perturbations improves uncertainty calibration without com-
promising accuracy. Additionally, we introduce a new metric
for uncertainty decomposition in black-box LLMs that im-
proves upon entropy-based decomposition by modeling se-
mantic continuities in natural language generation. We show
that this decomposition metric can be used to quantify how
much LLM uncertainty is attributed to prompt sensitivity. Our
work introduces a new way to improve uncertainty calibration
in prompt-sensitive language models, and provides evidence
that some LLMs fail to exhibit consistent general reasoning
about the meanings of their inputs.1

1 Introduction
As the size of large language models (LLMs) has scaled,
so has their performance across benchmark tasks (OpenAI
2023; Kaplan et al. 2020). Such gains have led many to
question whether LLMs are exhibiting early signs of gen-
eral intelligence (Bubeck et al. 2023). However, recent work
has shown that the distinction between reasoning and mem-
orization is nuanced. Many of the behaviors that appear to
indicate general reasoning ability in LLMs in fact repre-
sent modes of memorization. For instance, GPT-4’s ability
to decode ROT13 ciphers but not less common variants like
ROT2 raises questions about how LLMs acquire and gen-
eralize skills (McCoy et al. 2023). Similar patterns emerge
in other capabilities. Lu et al. (2024) observe that some
LLMs can solve arithmetic word problems and demonstrate
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uncertainty

physical intuition through in-context learning, but strug-
gle in zero-shot settings, suggesting a dependence on pat-
tern recognition. As new capabilities emerge, the nature
of each advancement—whether it represents true reason-
ing ability or increasingly sophisticated forms of memoriza-
tion—remains a fundamental question in AI research.

A relevant phenomenon in large language models is
prompt sensitivity (Sclar et al. 2023; Lu et al. 2022; Chen
et al. 2024; Shi et al. 2023). Simply reformatting prompts
by turning uppercase characters to lowercase or modifying
spaces between input fields can result in dramatic differ-
ences in responses (Sclar et al. 2023). Further, changing the
order of examples in few-shot learning can lead to substan-
tial variance in accuracy, even in very large models (Lu et al.
2022). We consider whether prompt sensitivity in LLMs also
indicates a failure of general reasoning: Is the model’s re-
sponse a function of the meaning of a prompt, or merely the
sequence of tokens that convey it?

We address this question with an uncertainty quantifi-
cation framework, analyzing how distributional properties
of LLM outputs vary under meaning-preserving pertur-
bations. While models exhibiting true general reasoning
should maintain consistent distributions across semantically
equivalent inputs, memorization-based models may produce
distributions that reflect surface-level statistical patterns in
their training data rather than deeper semantic understand-
ing. This distinction results in differences in calibration,
even when accuracy is held constant across both types of
models. We leverage this insight to develop a calibration-
based measure of general reasoning performance. Uncer-
tainty calibration offers a unique way to assess a model’s
general reasoning performance on in-domain tasks.

To this end, we develop a framework of semantic-
invariant perturbations, transforming input questions while
preserving their meaning. We introduce a new uncertainty
quantification metric that captures semantic continuities in
language and can be decomposed into epistemic uncertainty
(reflecting uncertainty about meaning) and aleatoric uncer-
tainty (reflecting uncertainty about token sequences). We
show that sampling with our perturbation framework and
measuring uncertainty with our total variance metric yields
superior calibration on question-answering (QA) tasks, sup-
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Figure 1: Problem statement and the semantic-invariant perturbation framework.

porting the hypothesis that some LLMs overfit to token se-
quences. We also show that decomposing this metric into
epistemic uncertainty and aleatoric uncertainty can be used
to quantify distributional sensitivity to meaning-preserving
perturbations.

2 Overfitting in Question Answering
Figure 1 demonstrates the problem we address in this paper:
overfitting in question answering. In question answering, it
is important to distinguish between the semantic content and
the lexical representation of a question. The answer to a
question is fundamentally a function of its meaning rather
than the specific language used to express it. We refer to this
underlying meaning as the semantic concept and the specific
words as the token representation. LLMs are trained to pre-
dict future tokens based on sequences of tokens, thus directly
learning the map from token representations to answers. But
models that generalize well should also learn the map from
semantic concepts to answers.

Previous work has shown that neural networks can
abruptly transition from memorization to discovering gen-
eral patterns. For instance, transformers trained on modu-
lar arithmetic initially memorize examples before learning
generalizable arithmetic rules (Power et al. 2022). In ques-
tion answering, we propose evaluating generalization per-
formance by measuring how a model’s answer distribution
varies across different token representations of the same se-
mantic concept. A model that has learned true semantic pat-
terns should maintain consistent answer distributions regard-

less of phrasing. However, when models generate varying
distributions for semantically equivalent questions, this indi-
cates potential overfitting to specific token sequences. This
token-level overfitting impairs the model’s ability to reliably
represent uncertainty, resulting in poor uncertainty calibra-
tion.

Prior work has shown that foundation LLMs do indeed
overfit, responding in different ways to semantically equiv-
alent prompts (Kadavath et al. 2022; Sclar et al. 2023; Chen
et al. 2024; Shi et al. 2023). Given this problem, we ask two
questions: (1) How can we recover uncertainty calibration
from an overfitted model? and (2) How can we quantify how
much a model overfits?

3 Semantic-Invariant Perturbation Sampling
Perturbation framework. Given that a model overfits to
unique token representations, we aim to recover the model’s
answer distribution over the entire semantic concept. In the
context of a black-box LLM, where we can only measure
distributions by taking samples, we propose sampling across
the semantic concept space rather than from individual token
representations.

To achieve this, we use semantic-invariant perturbations,
specifically through paraphrasing. Paraphrasing involves
generating multiple different but semantically equivalent
versions of the same question. By sampling the model’s
responses to these varied paraphrases, we can estimate a
more accurate answer distribution that reflects the under-
lying semantic concept rather than the specific wording.



This method mitigates the overfitting issue by averaging the
model’s outputs across different phrasings, thus better mea-
suring its true uncertainty and improving calibration. Figure
2 illustrates the semantic-invariant perturbation framework.

For example, if the original question were “Who was the
British Prime Minister after Arthur Balfour?”, we generate
np paraphrases such as “Who succeeded Arthur Balfour as
Prime Minister of Britain?” and “After Arthur Balfour, who
became the British Prime Minister?” We then take ns sam-
ples of the model’s response to each of these paraphrases
and aggregate the results to form a comprehensive distribu-
tion over the semantic concept.

Theoretical motivation. We borrow from ergodic theory
to illustrate our method. Suppose that the semantic concept
space is the union of its m token representations. We as-
sume that each token representation is equally likely, i.e.,
that token representations take up equal space in the seman-
tic concept space. It is useful to model the semantic concept
space as the circle S1 and each token representation ti as a
connected interval in S1 from

[
i−1
m , i

m

)
.

Each token representation is modeled by a random vari-
able Q(ti) representing the language model’s distribution
over responses at that token representation. Under the as-
sumption that each token representation is equally likely, we
claim that Q(c), the model’s true response distribution over
the semantic concept, is equal to the average distribution at
each token representation:

Q(c) =
1

m

m∑
i=1

Q(ti). (1)

We say that Equation 1 represents the space average over
the semantic concept space.

We consider randomly sampling token representations
from the semantic concept space as a map from a previous
token representation to the next. We define this map by an
irrational circle rotation:

Tθ : [0, 1] → [0, 1], Tθ(x) = (x + θ) mod 1, θ ∈ R \ Q. (2)

This map is ergodic (Hawkins 2021). Over infinitely many
samples, the map will visit each token representation with a
frequency proportional to its size in the concept space. By
construction, the representations are of equal size, so this
sampling map limits to the uniform distribution over token
representations.

By the Birkhoff ergodic theorem, we notice that the time
average along the trajectory defined by Tθ limits to the space
average of the semantic concept space as time goes to infin-
ity (Hawkins 2021):

lim
n→∞

1

n

n−1∑
k=0

Q(T
k
(x)) =

1

m

m∑
i=1

Q(ti) = Q(c). (3)

In our perturbation method, this means that randomly uni-
formly sampling over the token representations, measuring
the response distribution Q(ti) at each representation, and
averaging over time approaches the true distribution we aim
to model, Q(c). In practice, we assume a black-box model,
so we cannot exactly measure Q(ti) at each step. Instead,
we sample some small number of times from Q(ti) at each
step, and the rate of convergence depends upon the sampling
efficiency at each ti.

4 Uncertainty Decomposition
Introducing perturbations for each question and sampling
from those perturbations can be interpreted as decompos-
ing the total uncertainty into components of epistemic un-
certainty and aleatoric uncertainty. As illustrated in Figure
2 (C), epistemic uncertainty captures the inter-sample un-
certainty, i.e., the uncertainty introduced by including dif-
ferent perturbations, and aleatoric captures the intra-sample
uncertainty, i.e., the uncertainty at a particular token repre-
sentation. Under our perturbation framework, epistemic un-
certainty can be interpreted as paraphrase uncertainty, or
the uncertainty attributed to the model’s prompt sensitivity,
and aleatoric uncertainty can be interpreted as sampling un-
certainty, or the average uncertainty reflected in the model’s
output distribution at specific prompts.

Quantifying each of these components yields important
insights. In a well-calibrated model, epistemic uncertainty
should make up a small fraction of its total uncertainty, be-
cause the distributions it generates at different paraphrases
should be similar. The ratio of epistemic uncertainty to total
uncertainty quantifies how sensitive the model is to its input
phrasings. Further, by calculating the calibration attributed
to epistemic and aleatoric uncertainty independently, we
can measure the marginal calibration improvement due to
adding a new paraphrase to the sampling pipeline. To quan-
tify each of these components, we decompose total uncer-
tainty into its constituent parts.

A desirable property of an uncertainty metric U is that the
metric decomposes additively by:

U = Ue + Ua (4)

such that Ue represents the inter-sample (epistemic) uncer-
tainty and Ua represents the intra-sample (aleatoric) un-
certainty. Previous work on uncertainty decomposition in
LLMs has used entropy-based metrics to decompose uncer-
tainty in this way (Kuhn, Gal, and Farquhar 2022; Hou et al.
2023). However, entropy-based metrics require discretizing
LLM outputs into distinct classes and calculating entropy
over the resulting probability distribution. This discretiza-
tion disregards semantic continuities and partial similarities,
and consequently results in suboptimal calibration. We in-
troduce a new uncertainty metric for black-box LLMs based
on embedding variance, which models semantic continuities
while decomposing additively as described by Equation 4.

Background on Uncertainty Quantification
Our framework builds upon work that quantifies uncertain-
ties in meaning for natural language generation (NLG). In
NLG, quantifying uncertainty is crucial for interpreting and
improving model performance. Calibration is a common
way to evaluate an uncertainty measure.

Calibration. A useful uncertainty metric is one that pro-
vides information about whether the model’s prediction is
correct or incorrect. An uncertainty metric with high cali-
bration will result in very different uncertainty distributions
for correct generations and incorrect generations (see part
(D) of Figure 2). Following previous work (Kuhn, Gal, and
Farquhar 2022; Lin, Trivedi, and Sun 2023), we evaluate un-
certainty metrics by using them to predict if a response was
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Figure 2: Pipeline for the semantic-invariant perturbation framework.

correct and calculating the Area Under Receiver Operating
Characteristic (AUROC) of this function.

Entropy. Traditional uncertainty metrics, such as entropy,
measure the unpredictability of a model’s output distribution
(Lu et al. 2022). The uncertainty for a classifier given input
x can be measured by the entropy of its output distribution
Y :

Uentropy(x) = H(Y | x) = −
∑
y∈Y

P (y | x) ln
(
P (y | x)

)
. (5)

Semantic entropy. However, in NLG, the model may gener-
ate lexically distinct but semantically equivalent responses,
such as “The United States” and “USA.” To address this,
Kuhn, Gal, and Farquhar (2022) introduced semantic en-
tropy, which calculates entropy over classes of semantically
equivalent responses c ∈ C:

USE(x) = H(Y | x) = −
∑
c∈C

P (c | x) ln
(
P (c | x)

)
. (6)

Affinity graph metrics. While semantic entropy improves
upon traditional entropy by considering semantic equiva-
lence, it still relies on a discrete model of semantic space.
In practice, responses are often similar in meaning but not
identical. For white-box settings, Duan et al. (2024) pro-
posed an attention mechanism to measure how much each
token contributes to meaning and compute a weighted aver-
age of uncertainty. To capture these continuous relationships
in white-box models, Lin, Trivedi, and Sun (2023) propose
creating an affinity graph, where nodes represent unique re-
sponses and edges represent relationships (bidirectional en-
tailment, contradiction, or similarity) between pairs of re-
sponses. One metric derived from the graph’s Laplacian, the

sum of eigenvalues, extends the concept of semantic sets to
continuous semantic sets (UEigV). The affinity-graph metrics
proposed by Lin, Trivedi, and Sun (2023) improve upon pre-
vious metrics by modeling semantic continuities when quan-
tifying uncertainty, and are generally better calibrated than
entropy and semantic entropy (see Section 5).

Background on Uncertainty Decomposition
Affinity-graph-based uncertainty metrics improve calibra-
tion in NLG, but by diverging from conventional entropy-
based metrics they sacrifice entropy’s interpretability. A
valuable property of entropy-based uncertainty quantifica-
tion metrics is the ability to decompose into aleatoric and
epistemic uncertainty:

H(Y | x) = H(Y | x, θ)︸ ︷︷ ︸
aleatoric

+ I(Y, θ | x)︸ ︷︷ ︸
epistemic

, (7)

where θ represents a particular parameterization. In
Bayesian Neural Networks, this decomposition reflects that
models are randomly parameterized and there is uncertainty
in these parameters (Depeweg et al. 2018). In the context of
LLMs, we suppose θ represents that for any question x, there
is a distribution over possible ways to phrase that question.

This decomposition has been used for ambiguity detec-
tion, in-context learning analysis, and calibration evaluation
(Hou et al. 2023; Ling et al. 2024). However, entropy-based
decomposition is not easily generalized to newer metrics.
Ling et al. (2024) suggest decomposing uncertainty via the
law of total variance:

Var(Y | x) = Eθ [Var(Y | x, θ)]︸ ︷︷ ︸
aleatoric

+ Var
(
Eθ[Y | x, θ]

)︸ ︷︷ ︸
epistemic

. (8)



However, taking variance over a probability distribution of
outputs does not resolve the issue of discretizing the se-
mantic output space. Instead, we propose a generalization
of variance decomposition to the many-dimensional case.

Uncertainty Decomposition by Embedding
Variance
Rather than force discrete classes on our outputs, we take
each output and embed it, adopting the classic continuous,
many-dimensional model of semantic space. We then calcu-
late the covariance matrix of these embeddings and take its
trace. Leveraging the notion of embedding dimensions as la-
tent features, we interpret this metric as the total dispersion
over our basis of latent features. Part (C) of Figure 2 visually
represents uncertainty decomposition using the embedding
variance method.

Let Y ∈ Rm×d be the matrix of embeddings, where m is
the number of samples and d is the embedding dimension.
The law of total covariance can be described as follows.

Cov (Y | x)︸ ︷︷ ︸
total

= Eθ [Cov (Y | x, θ)]︸ ︷︷ ︸
aleatoric

+ Cov (Eθ[Y | x, θ])︸ ︷︷ ︸
epistemic

. (9)

We can restate this equation in terms of the covariance
matrices Σt,Σa, and Σe. However, we would like to ex-
press uncertainty and its components as real values. We note
that each σii ∈ Σt represents the variance of the sample over
the embedding dimension i, and tr(Σt) =

∑d
i σii represents

the total variance over all embedding dimensions, which is
an informative uncertainty metric.

Σt = Σa + Σe

tr(Σt) = tr(Σa) + tr(Σe)

Ut = Ua + Ue

(10)

Ut is our decomposable embedding variance uncertainty
metric, described as “Variance (Total)” in Table 1. The em-
bedding variance uncertainty metric can be applied to any
embedding space, and may be particularly useful for eval-
uating foundation models on domain-specific tasks with a
specialized embedding model. Our evaluations involve more
conventional question answering. For evaluation, we embed
using the eigenvectors of the graph Laplacian following Lin,
Trivedi, and Sun (2023) and Ng, Jordan, and Weiss (2001).

Prompt Sensitivity Ratio
We lastly introduce a simple metric that can be used to mea-
sure how much of a model’s total uncertainty can be at-
tributed to epistemic uncertainty:

ρu =
Ue + ϵ

Ut + 2ϵ
, (11)

where ϵ is included to ensure ρu is defined at Ut = 0. In
practice, we use ϵ = 1e-4. This ratio quantifies the propor-
tion of total uncertainty attributed to epistemic uncertainty
and thus how prompt-sensitive a model is at a given seman-
tic concept. In Section 5 we show how this ratio can be used
to diagnose model overfitting.

5 Experiments
Perturbation Method
Let Q(Y | x, θ) be the response distribution of the language
model at an input x and parameterization θ. When using
paraphrasing perturbations, θ refers to some paraphrase of
the input x. We consider a setting where we are allowed m
total samples that are distributed equally across np pertur-
bations {θ1, θ2, . . . , θnp}. At each perturbation θi, we take
ns responses {yi1, yi2, . . . , yins} ∼ Q(Y | x, θi), such that
m = np · ns (see Figure 2). In Section 5 we compare dif-
ferent perturbation methods. For these experiments, m = 6
with np = 6 and ns = 1. The baseline for these experi-
ments, as well as the fixed-temperature study, reflects no-
perturbation sampling at m = 6, i.e., with the parame-
ters np = 1 and ns = 6. In Section 5 we attempt to an-
swer the question, Given a fixed number of samples from
the LLM, how should they optimally be distributed over per-
turbations? To do this, we measure calibration at different
factorizations of m over (np, ns). For m = 6, we test the
settings {(1, 6), (2, 3), (3, 2), (6, 1)}. For m = 12, we test
the settings {(1, 12), (2, 6), (3, 4), (4, 3), (6, 2)}.

Experimental Setup
Evaluation metrics. We evaluate uncertainty calibration us-
ing AUROC when predicting the accuracy of a generation
from its uncertainty as described in Section 4. Following
Lin, Trivedi, and Sun (2023), we evaluate the accuracy of
generations using GPT-3.5 Turbo to grade. The model is
provided with the question, correct answer, and generated
answer, and asked to determine if it is correct.

Datasets. We use two question-answering datasets: Triv-
iaQA (Joshi et al. 2017) and Natural Questions (NQ)
(Kwiatkowski et al. 2019).

Baselines. We benchmark our metric against several base-
line metrics. Entropy is used as a common measure of uncer-
tainty (Equation 5). Additionally, we include lexical similar-
ity (LexiSim), semantic entropy (SE) from Kuhn, Gal, and
Farquhar (2022), and the sum of eigenvalues (UEigV) met-
ric based on the entailment affinity graph proposed by Lin,
Trivedi, and Sun (2023).

Implementation details. For our experiments, we select
the first 1,000 question-answer pairs from the validation split
of each dataset. The number of perturbations (np) and the
number of samples (ns) were experimented with in different
pairs. We run each experiment 5 times, and report the means
and standard deviations of evaluation metrics. We utilize
three LLMs: GPT-3.5 (gpt-3.5-turbo-0125) (Ouyang et al.
2022), Llama 2-Base (7B), and Llama 2-Chat (7B) (Tou-
vron et al. 2023). For GPT-3.5, we sample with temperature
1. For Llama models, we sample with temperature 0.6. The
experiments were conducted on eight RTX A6000 GPUs.

Perturbation Method Comparison
Previous work has proposed the use of temperature sam-
pling to recover calibration in miscalibrated language mod-
els (Desai and Durrett 2020; Gao et al. 2024; Kadavath et al.
2022; Ling et al. 2024). However, the effects of temperature
scaling on calibration can be misleading. By sampling at a



Metric
m = 6 m = 12

(1, 6) (2, 3) (3, 2) (6, 1) (1, 12) (2, 6) (3, 4) (4, 3) (6, 2)

TriviaQA

GPT 3.5

Entropy 74.3±0.8 77.7±1.7 77.8±0.6 78.2±1.0 77.4±0.8 78.8±0.9 79.5±0.5 80.1±1.1 79.2±1.0
LexiSim 77.3±0.6 81.0±1.8 81.6±0.7 82.0±1.1 80.3±1.0 82.1±1.0 83.4±0.6 83.6±1.0 83.1±1.1
SE 75.6±0.7 79.5±2.0 79.6±1.0 80.3±1.3 80.1±1.1 81.2±1.1 82.1±0.6 83.1±1.2 82.0±0.8
UEigV 79.2±0.8 83.3±2.0 84.2±0.8 84.7±1.1 83.3±1.2 84.7±0.9 85.7±0.7 86.5±1.1 85.6±0.7
Variance (Tot) 79.0±1.2 82.9±2.2 84.3±0.9 84.9±1.2 83.5±1.1 85.0±0.8 86.4±0.7 87.4±1.0 86.4±0.7
Variance (AU) 79.0±1.2 82.7±2.2 84.1±0.8 — 83.5±1.1 84.9±0.8 86.3±0.7 86.9±0.9 85.7±0.8
Variance (EU) — 81.9±2.6 83.7±1.1 84.9±1.2 — 83.4±1.2 85.8±0.5 87.0±0.7 86.2±0.8

NQ

GPT 3.5

Entropy 54.6±1.1 54.0±0.9 54.0±0.7 54.3±1.0 54.4±0.3 54.4±0.3 54.7±1.0 54.1±0.5 54.5±0.4
LexiSim 62.3±1.3 62.6±0.9 64.0±1.0 64.5±1.1 63.1±1.2 63.6±0.7 64.5±1.0 64.4±0.4 65.1±0.2
SE 60.2±1.1 61.5±0.6 62.1±0.9 62.0±0.8 61.1±0.5 61.1±0.5 62.6±1.0 62.4±0.4 63.3±0.4
UEigV 66.3±0.7 67.9±0.5 69.0±0.6 69.5±0.9 67.9±0.4 68.8±0.2 69.7±1.3 70.0±0.7 70.9±0.5
Variance (Tot) 66.8±0.5 68.2±0.5 68.9±0.6 69.6±0.9 69.2±0.6 70.2±0.6 70.8±1.5 71.1±0.7 72.0±0.8
Variance (AU) 66.8±0.5 66.9±0.6 68.2±0.9 — 69.2±0.6 70.3±0.6 70.7±1.6 71.3±0.8 71.6±0.9
Variance (EU) — 68.2±0.5 68.8±0.8 69.6±0.9 — 68.0±0.6 70.7±1.6 71.3±0.8 71.6±0.9

Table 1: Calibration (AUROC) results of GPT-3.5 over (np, ns) pairs.

high temperature, one can “smooth” the predictive distribu-
tion, making the model systematically under-confident. For
example, a model that always predicts 50% probability on
a binary, balanced dataset will be well-calibrated but have
equal-to-random accuracy.

Previous work has evaluated uncertainty calibration in
isolation. We additionally study the relationship between
calibration and accuracy for different sampling methods.
We consider several meaning-preserving perturbation meth-
ods: Paraphrasing (different phrasings of the same question),
Dummy Tokens (adding irrelevant tokens to the question),
and System Messages (using different system instructions).

We study the effects of temperature on calibration in two
ways. First, following Gao et al. (2024), we test perturbation
by Random Temperature (sampling temperature randomly
over the uniform distribution [0,1]). Second, also following
Gao et al. (2024), we test calibration performance across a
range of fixed temperature settings, illustrating the trade-off
between accuracy and calibration for temperature reshaping.

Figures 3a and 3b show the results of these experiments
over 1,000 questions with GPT-3.5. For all perturbation
methods in Figure 3a, for each question, we perform six per-
turbations, and sample from each perturbation once. Pertur-
bations are compared to a no-perturbation baseline, in which
we sample from a single, randomly chosen paraphrase 6
times for each question.

In the fixed temperature sampling results in Figure 3b we
also sample from a single, randomly chosen paraphrase 6
times for each question at the indicated temperature setting.
Figures 3a and 3b show the mean calibration (AUROC) and
accuracy results over five experiments, with error bars rep-
resenting the standard deviations.

Our overfitting framework for model miscalibration moti-
vates recovering calibration by sampling across different dis-

(a) Calibration and accuracy (Temperature = 1).

(b) Calibration and accuracy at fixed sampling temperatures.

Figure 3: Comparison of calibration and accuracy at differ-
ent temperatures.



Calibration (AUROC) ρu

TriviaQA NQ TriviaQA NQ
Base Chat Base Chat Base Chat Base Chat Baseline

(1 , 12) 87.5± 0.3 79.2± 0.5 77.8± 0.1 68.1± 0.6 — — — — —
(2 , 6) 87.8± 0.6 81.8± 0.5 78.3± 0.2 71.1± 0.5 34.0± 0.1 38.0± 0.2 25.5± 0.5 32.1± 0.5 16.7
(3 , 4) 88.1± 0.2 82.8± 0.4 78.1± 0.6 71.6± 0.5 38.0± 0.4 40.7± 0.4 32.0± 0.2 36.5± 0.2 25.0
(4 , 3) 88.1± 0.5 82.5± 0.5 77.9± 0.5 72.9± 0.4 44.2± 0.2 46.3± 0.3 40.3± 0.2 43.9± 0.3 33.3
(6 , 2) 88.1± 0.7 83.6± 0.5 77.9± 0.4 73.1± 0.7 52.8± 0.2 53.5± 0.2 53.4± 0.3 54.6± 0.2 50.0

Table 2: Llama 2-Chat and Llama 2-Base comparison over (np, ns) pairs.

tributions, representing the same semantic concept. Changes
in temperature sampling, however, sample from the same
distribution, merely reshaped. We show that improvements
in calibration due to temperature perturbation coincide with
a decrease in accuracy. By contrast, semantic-invariant per-
turbation methods yield Pareto improvements in calibration
(i.e., without trading accuracy). Further, paraphrasing per-
turbation, the most aggressive of the semantic-invariant per-
turbations, shows the greatest improvement in calibration.
Our results reinforce that perturbation sampling in LLMs
should use semantic-invariant perturbations, and suggest
that paraphrasings are the optimal way to do this.

Calibration Results

The previous section demonstrates that perturbation by para-
phrasing yields the greatest improvement in calibration, and
does so without trading accuracy. Here, we measure how
different degrees of paraphrasing perturbation affect model
calibration. We also compare the calibration of the embed-
ding variance metrics proposed in Section 4 to several base-
line metrics: predictive entropy (Equation 5), lexical simi-
larity (following Lin, Trivedi, and Sun (2023)), semantic en-
tropy from Kuhn, Gal, and Farquhar (2022) (Equation 6),
and UEigV from Lin, Trivedi, and Sun (2023). Results in Ta-
ble 1 show that our embedding variance metric is competi-
tive with the UEigV and surpasses all others.

As we increase the number of perturbations, we observe
a shift in calibration attribution: epistemic uncertainty con-
tributes more to calibration while aleatoric uncertainty con-
tributes less. Sampling more broadly across the semantic
concept space (through diverse paraphrases) improves cal-
ibration across all metrics. Notably, a sample from a new
paraphrase provides more marginal information than an ad-
ditional sample of the same paraphrase. This aligns with our
understanding of token-level overfitting: The model’s cali-
bration suffers when repeatedly sampling from the same to-
ken representation, but improves when sampling across var-
ied paraphrases that better capture the underlying distribu-
tion over the input’s meaning.

Table 2 presents results from evaluation on Llama 2-Base
and Llama 2-Chat. It includes calibration results based on
total embedding variance, and the uncertainty ratio ρu from
Equation 11 over choices of (np, ns) for m = 12.

Case Study: Base vs. Chat
A common approach to fine-tuning a pre-trained LLM is re-
inforcement learning from human feedback (RLHF) (Chris-
tiano et al. 2017). However, previous work has shown RLHF
policies can cause models to become miscalibrated by “col-
lapsing” their output distributions (OpenAI 2023; Kadavath
et al. 2022). In this section, we compare the calibrations of
a pre-trained base model Llama 2-Base and the RLHF-fine-
tuned model Llama 2-Chat (Touvron et al. 2023).

When decomposing uncertainty using variance, we ob-
serve that the prompt sensitivity metric ρu (the ratio of inter-
sample variance Ua to total variance Ut) has a natural rela-
tionship with the number of samples ns. A perfectly general-
izing model will sample all answers from the same underly-
ing distribution, regardless of input perturbations. For such
a model, ρu will approach 1

ns
as ns grows. This provides us

with a theoretical baseline: any positive deviation from 1
ns

indicates a departure from perfect generalization, making 1
ns

a prompt-insensitive baseline for ρu.
We note two trends in Table 2: (1) Perturbation does not

substantially improve calibration in the base model, indicat-
ing that the base model is well-calibrated at individual para-
phrases. (2) The ratio ρu is consistently larger for the chat
model than the base model, indicating that the chat model
is more prompt-sensitive than the base model. These results
provide evidence that large pre-trained models like Llama 2-
Base generalize well from token representations to question
concepts, but post-training may induce post-hoc overfitting.

6 Conclusion
Our work considers the hypothesis that miscalibration in
LLMs stems from prompt sensitivity, and demonstrates that
sampling across semantic concept space using paraphrases
improves calibration on QA tasks. We introduce a new un-
certainty metric to quantify different components of un-
certainty under our perturbation framework, and use these
to measure model prompt sensitivity. Supporting previous
work, we find models post-trained with RLHF are particu-
larly prompt-sensitive. We hope our work provides a way to
improve uncertainty calibration in black-box LLMs, facili-
tating more trustworthy AI systems, and sheds light on an in-
teresting limitation of post-trained LLMs. Future work may
explore whether prompt-sensitivity indicates a deeper struc-
tural shift in how these models encode and retrieve knowl-
edge or a superficial artifact of alignment-driven constraints.
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